

Pergamon

Unexpected ring C enlargement of the aspidospermane skeleton

Guy Lewin, a,* Corinne Schaefferb and Reynald Hocquemillera

^aLaboratoire de Pharmacognosie, (BIOCIS, UPRES-A 8076 CNRS), Faculté de Pharmacie, av. J.B. Clément, 92296 Châtenay-Malabry, Cedex, France ^bInstitut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France

Received 13 September 2001; accepted 19 October 2001

Abstract—Treatment of (-)-16-chloro-1-dehydro-5-methoxy-vincadifformine 4 with Ac₂O-pyridine led to the rearranged compound 6 through an unexpected ring C expansion. Upon reaction with dimethyl acetylenedicarboxylate, 4 provided the [2+2] cycloaddition derivative 9 but did not undergo the ring C enlargement. © 2001 Elsevier Science Ltd. All rights reserved.

In a previous publication, we reported the cytotoxicity of 1 (IC₅₀ on L1210 leukemia cells 7×10^{-7} M), a semisynthetic Aspidosperma alkaloid prepared from (-)-vincadifformine 2. The C-6 bromination seemed essential for the activity since (-)-16-chloro-1-dehydrovincadifformine 3^2 was not cytotoxic. Therefore, we carried on the study of functionalization at C-6 with acylation reactions of the carbinolamine ether 4, a key intermediate in the preparation of 1 from 2.3

2

 $R_2 = H$ $R_1 = Br$ 3 $R_2 = H$ $R_1 = H$ $R_2 = OCH_3$ 4 $R_1 = H$ $R_1 = COCF_3$ $R_2 = H$ Δ 5-6

While treatment of 4 with trifluoroacetic anhydride (TFAA, pyridine, rt, 1 h) led to the expected enamino trifluoromethylketone 5⁴ (39%), replacement of TFAA by acetic anhydride (rt, 20 h) provided after standard work up of the reaction the original ring expanded derivative 6⁴ (63%). The ring C enlargement for 6 was suggested mainly by mass and NMR spectral data

Keywords: indole alkaloids; aspidospermane; vincadifformine; ring expansion; [2+2] cycloaddition.

(molecular ion at m/z 430, lack of the acetyl singlet signal in the ¹H NMR spectrum). Furthermore, the IR spectrum showed a strong hydroxyl band (3400-2500 cm⁻¹) and, related to 4, an additional carbonyl band (1705 cm⁻¹), while the ¹H NMR spectrum displayed at δ 4.15 ppm a pseudoquintuplet (J=5 and 6.1 Hz, 1H) characteristic of a CHOH group. The β-hydroxy lactam substructure for the ring C was supported by the occurrence in the ¹³C NMR spectrum of a new carbonyl signal related to 4 at 174.1 ppm and was confirmed by HMBC experiments which clearly exhibited characteristic ${}^{3}J({}^{1}H^{-13}C)$ values between C-2 at 180 ppm and H-6, H-17 and H-21. Treatment of 6 by sodium iodide in acetic acid (3 equiv. NaI, rt, 2 h) allowed for recovery of the anilinoacrylate ester chromophore and afforded compound 7 (64%), which represents a semi-synthetic ring C expanded analog of (-)-vincadifformine 2.4 The configuration of the carbinol carbon was inferred from the significant NOE observed in 7 between, on the one hand CHOH (3.78 ppm) and H-15a (1.85 ppm), and on the other hand H-21 (3.53 ppm) and H-15b (1.55 ppm). Inspection of molecular models proved unambiguously that an observed NOE between CHOH and one H-15 could only be consistent with an S configuration of the carbinol carbon.

^{*} Corresponding author Tel.: 33 146835593; fax: 33 146835399; e-mail: guy.lewin@cep.u-psud.fr

When the acylation of **4** was achieved with (acetic anhydride)- d_6 , the isolated compound was, according to HREIMS, a mixture of di-, tri- and tetradeuteriated analogs of **6**. A thorough ¹H NMR study of this mixture proved that the C-23 position was always dideuterated (no more H-23 signal), and that other deuterium atoms were only fixed at C-6 [the CHOH signal at δ 4.15 ppm (1H) appeared as the overlapping of a singlet, a doublet and a triplet].

Mechanism of the ring C expansion (Scheme 1). The carbinolamine ether 4 was expected to react at C-6 under its enamine form as observed with TFAA or previously with BrCN.³ However, isolation of the β-hydroxy lactam 6 did not support that hypothesis: an initial C-6 acylation followed by ring C expansion through a supposed cyclobutanone intermediate would provide the enamino ketone 8 instead of 6. The following mechanism appears more likely: it implies a transformation of 4 into the carbinolamine, which undergoes N-acylation and the 4–5 bond cleavage, then a cyclization of the resultant aldehyde leads to 6 by an aldol-type condensation; equilibrium of this last reaction can account for the results observed with (acetic anhydride)- d_6 .

This ring expansion of **4** to **6** led us to investigate behavior of **4** towards dimethyl acetylenedicarboxylate (DMAD), an acetylenic ester known to react with enamines according to a [2+2] cycloaddition mechanism, and to provide with cyclic enamines ring expanded compounds.^{6,7} Heating under vacuum a dichloromethane solution of **4** (0.1 mmol) and DMAD (0.16 mmol) (60°C, 5 min) afforded the expected compound **9** (53%).⁸ Structure of **9** was deduced from the EI mass spectrum (molecular pic at m/z 512) and from NMR data, which displayed characteristic signals of the additional cyclobutene ring (¹H NMR: H-5 and H-6, 2d, J=3.7 Hz at 4.62 and 3.75 ppm; 2 CO₂CH₃, 2s at 3.88 and 3.26 ppm; ¹³C NMR: C-5 and C-6 at 66.6 and 52.6 ppm; C-23 and C-24 at 143.2 ppm; 2 CO₂CH₃

at 162.7 and 161.5 ppm). The probable *cis* C5–C6 ring junction was confirmed by the observed NOE between H-5 and H-6 signals. Moreover, the presence of NOE between H-3a (3.42 ppm) and H-5, H-6 and between H-3b (2.70 ppm) and H-21 (3.21 ppm) on the one hand, and lack of observed NOE between H-21 and H-5, H-6 on the other hand proved stereochemistry at C-5 and C-6 to be 5*R* and 6*R*.

Compound **9** was easily converted to the bright yellow derivative **10** in 66% yield by heating in methanol (reflux, 20 min). 8.9 **10** displayed the same molecular weight as **9** but UV, IR and NMR data revealed opening of the cyclobutene ring between C-5 and C-23. Contrary to **6**, **10** was not a ring C expanded derivative but appeared to be the result of the Michael addition of DMAD on the enamine of **4**. A such evolution of the [2+2] cycloaddition compound by heating in a polar solvent has already been mentioned. 6.7

The unusual ring expansion described in this letter allowed the easy isolation of a new skeleton with a functionalized ring C, which can be potentially interesting from both chemical and biological points of view.

Acknowledgements

We wish to thank Professor Jean Lévy (University of Reims) and the referee for helpful suggestions about

mechanism of the ring expansion. We also thank Dr. P.-H. Lambert (IdRS) for HREIMS experiments.

References

- Lewin, G.; Atassi, G.; Pierré, A.; Rolland, Y.; Schaeffer, C.; Poisson, J. J. Nat. Prod. 1995, 58, 1089–1091.
- Pierron, C.; Garnier, J.; Lévy, J.; Le Men, J. Tetrahedron Lett. 1971, 1007–1010.
- Lewin, G.; Poisson, J. Tetrahedron Lett. 1994, 35, 8153– 8156.
- 4. **5**: Mp 223–225°C (MeOH); $[\alpha]_D = -111$ (c = 0.4, CHCl₃); UV (EtOH, λ_{max} nm) 228, 330; IR (cm⁻¹) 1730, 1625, 1560 (strong); ¹H NMR (CDCl₃, δ ppm) characteristic signals at 7.70 (s, H-5), 7.70 (d, H-12), 7.4–7.25 (m, H-9, H-10, H-11), 3.98 (s, 3H, CO₂CH₃), 3.95 (s, H-21), 0.65 (t, 3H-18); EIMS (molecular peaks at m/z 466–468). **6**: Amorphous; $[\alpha]_D = -47$ (c = 0.3, CHCl₃); UV (EtOH, λ_{max} nm) 228, 284; IR (cm⁻¹) 3400–2500, 1735 (ester), 1705 (lactam); ¹H NMR (CDCl₃, δ ppm) characteristic signals at 4.15 (m, J = 6.1 and 5 Hz, H-5), 4.00 (s, 3H, CO₂CH₃), 3.37 (s, H-21), 3.20 (dd, J = 14 and 6.1 Hz, H-6), 2.75 (d, J = 5 Hz, 2H-23), 2.07 (dd, J = 14 and 6.1 Hz, H-6); ¹³C NMR (CDCl₃, δ ppm) 7.6 (C-18), 18.6 (C-15), 30.7 (C-19),

33.1 (C-14), 33.4 (C-23), 36.8 (C-20), 43.0 (C-6), 44.1

(C-17), 46.4 (C-3), 58.6 (C-5), 60.8 (C-7), 65.0 (C-16), 73.5 (C-21), 121.9 (C-12), 122.8 (C-9), 128.3 and 128.6 (C-10

and C-11), 146.0 (C-8), 152.0 (C-13), 170.4 (CO₂CH₃),

174.1 (C-24), 180.0 (C-2); HREIMS

- $C_{23}H_{27}^{35}CIN_2O_4$ 430.1659, found 430.1658. 7: Amorphous; $[\alpha]_D = -274$ (c = 0.35, CHCl₃); HREIMS calcd for $C_{23}H_{28}N_2O_4$ 396.2049, found 396.2045.
- 5. Unpublished previous works have shown that the C4-OCH₃ bond in 4 was very easy to cleave. Consequently, the carbinolamine intermediate could have been generated from 4 owing slight traces of water.
- Kantorowski, E. J.; Kurth, M. J. Tetrahedron 2000, 56, 4317–4353.
- Reinhoudt, D. N.; Verboom, W.; Visser, G. W.; Trompenaars, W. P.; Harkema, S.; van Hummel, G. J. *J. Am. Chem. Soc.* 1984, 106, 1341–1350.
- 8. 9: mp 213–215°C (MeOH); $[\alpha]_D = -33$ (c = 0.3, CHCl₃); UV (EtOH, λ_{max} nm) 226, 270; IR (cm⁻¹) 1738, 1720 (esters); ¹H and ¹³C NMR (CDCl₃, δ ppm): see text; other characteristic signals at 3.99 (s, 3H, C16–CO₂CH₃), 3.21 (s, H-21) and at 170.9 (C16–CO₂CH₃); HREIMS calcd for C₂₇H₂₉³⁵ClN₂O₆ 512.1714, found 512.1712.

 10: mp 250–252°C (MeOH); $[\alpha]_D = +105$ (c = 0.4, CHCl₃); UV (EtOH, λ_{max} nm) 228, 278, 379; IR (cm⁻¹) 1734 and 1694 (esters), 1551 (conjugated olefins); ¹H NMR (CDCl₃, δ ppm) characteristic signals at 6.82 (s, H-5), 4.00 (s, 3H, C16–CO₂CH₃), 3.92 (s, H-23), 3.89 (s, H-21), 3.86 and 3.48 (2s, 2 CO₂CH₃); ¹³C NMR (CDCl₃, δ ppm) characteristic signals at 50.9, 54.0 and 54.2 (3 CO₂CH₃), 77.1 (C-21), 100.6 (C-23), 107.0 (C-6), 145.1 (C-24), 148.6 (C-5); HREIMS calcd for C₂₇H₂₉³⁵ClN₂O₆ 512.1714, found 512.1732.
- 9. The conversion of 9 into 10 was also achieved by adsorption of 9 on silicagel then elution after 25 min.